Defective DNA-damage repair induced by nuclear lamina dysfunction is a key mediator of smooth muscle cell aging.

نویسندگان

  • Derek T Warren
  • Catherine M Shanahan
چکیده

Accumulation of DNA damage is a major driving force of normal cellular aging and has recently been demonstrated to hasten the development of vascular diseases such as atherosclerosis. VSMCs (vascular smooth muscle cells) are essential for vessel wall integrity and repair, and maintenance of their proliferative capacity is essential for vascular health. The signalling pathways that determine VSMC aging remain poorly defined; however, recent evidence implicates persistent DNA damage and the A-type nuclear lamins as key regulators of this process. In the present review, we discuss the importance of the nuclear lamina in the spatial organization of nuclear signalling events, including the DNA-damage response. In particular, we focus on the evidence suggesting that prelamin A accumulation interferes with nuclear spatial compartmentalization by disrupting chromatin organization and DNA-damage repair pathways to promote VSMC aging and senescence.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prelamin A accelerates vascular calcification via activation of the DNA damage response and senescence-associated secretory phenotype in vascular smooth muscle cells.

RATIONALE Vascular calcification is prevalent in the aging population, yet little is known of the mechanisms driving age-associated vascular smooth muscle cell (VSMC) phenotypic change. OBJECTIVE To investigate the role of nuclear lamina disruption, a specific hallmark of VSMC aging, in driving VSMC osteogenic differentiation. METHODS AND RESULTS Prelamin A, the unprocessed form of the nucl...

متن کامل

Prelamin A impairs 53BP1 nuclear entry by mislocalizing NUP153 and disrupting the Ran gradient

The nuclear lamina is essential for the proper structure and organization of the nucleus. Deregulation of A-type lamins can compromise genomic stability, alter chromatin organization and cause premature vascular aging. Here, we show that accumulation of the lamin A precursor, prelamin A, inhibits 53BP1 recruitment to sites of DNA damage and increases basal levels of DNA damage in aged vascular ...

متن کامل

Nucleotide excision DNA repair is associated with age-related vascular dysfunction.

BACKGROUND Vascular dysfunction in atherosclerosis and diabetes mellitus, as observed in the aging population of developed societies, is associated with vascular DNA damage and cell senescence. We hypothesized that cumulative DNA damage during aging contributes to vascular dysfunction. METHODS AND RESULTS In mice with genomic instability resulting from the defective nucleotide excision repair...

متن کامل

Vascular smooth muscle cell sirtuin 1 protects against DNA damage and inhibits atherosclerosis.

BACKGROUND Vascular smooth muscle cells (VSMCs) in human atherosclerosis manifest extensive DNA damage and activation of the DNA damage response, a pathway that coordinates cell cycle arrest and DNA repair, or can trigger apoptosis or cell senescence. Sirtuin 1 deacetylase (SIRT1) regulates cell ageing and energy metabolism and regulates the DNA damage response through multiple targets. However...

متن کامل

DNA damage links mitochondrial dysfunction to atherosclerosis and the metabolic syndrome.

RATIONALE DNA damage is present in both genomic and mitochondrial DNA in atherosclerosis. However, whether DNA damage itself promotes atherosclerosis, or is simply a byproduct of the risk factors that promote atherosclerosis, is unknown. OBJECTIVE To examine the effect of DNA damage on atherosclerosis, we studied apolipoprotein (Apo)E(-/-) mice that were haploinsufficient for the protein kina...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochemical Society transactions

دوره 39 6  شماره 

صفحات  -

تاریخ انتشار 2011